Banked Turn - Banked Turn With Friction

Banked Turn With Friction

When considering the effects of friction on the system, once again we need to note which way the friction force is pointing. When calculating a maximum velocity for our automobile, friction will point down the incline and towards the center of the circle. Therefore we must add the horizontal component of friction to that of the normal force. The sum of these two forces is our new net force in the centripetal direction:

Once again, there is no motion in the vertical direction, allowing us to set all opposing vertical forces equal to one another. These forces include the vertical component of the normal force pointing upwards and both the car's weight and vertical component of friction pointing downwards:

By solving the above equation for mass and substituting this value into our previous equation we get:

Solving for v we get:

This equation provides the maximum velocity for the automobile with the given angle of incline, coefficient of static friction and radius of curvature. By a similar analysis of minimum velocity, the following equation is rendered:

The difference in the latter analysis comes when considering the direction of friction for the minimum velocity of the automobile (towards the outside of the circle). Consequently opposite operations are performed when inserting friction into equations for forces in the centripetal and vertical directions.

Improperly banked road curves increase the risk of run-off-road and head-on crashes. A 2% deficiency in superelevation (say, 4% superelevation on a curve that should have 6%) can be expected to increase crash frequency by 6%, and a 5% deficiency will increase it by 15%. Up until now, highway engineers have been without efficient tools to identify improperly banked curves and to design relevant mitigating road actions. A modern profilograph can provide data of both road curvature and cross slope (angle of incline). A practical demonstration of how to evaluate improperly banked turns was developed in the EU Roadex III project, see the linked referenced document below.

Read more about this topic:  Banked Turn

Famous quotes containing the words banked, turn and/or friction:

    The winter owl banked just in time to pass
    And save herself from breaking window glass.
    Robert Frost (1874–1963)

    She’s in the house.
    She’s at turn after turn.
    She’s behind me.
    She’s in front of me.
    She’s in my bed.
    She’s on path after path,
    and I’m weak from want of her.
    O heart,
    there is no reality for me
    other than she she
    she she she she
    in the whole of the reeling world.
    And philosophers talk about Oneness.
    Amaru (c. seventh century A.D.)

    We have got onto slippery ice where there is no friction and so in a certain sense the conditions are ideal, but also, just because of that, we are unable to walk. We want to walk so we need friction. Back to the rough ground!
    Ludwig Wittgenstein (1889–1951)