Banach Space - Generalizations

Generalizations

Several important spaces in functional analysis, for instance the space of all infinitely often differentiable functions RR or the space of all distributions on R, are complete but are not normed vector spaces and hence not Banach spaces. In Fréchet spaces one still has a complete metric, while LF-spaces are complete uniform vector spaces arising as limits of Fréchet spaces.

Read more about this topic:  Banach Space