Definition
A Banach space is a vector space X over the field of real numbers R or complex numbers C which is equipped with a norm and which is complete with respect to that norm. Formally, the definition of a Banach space is :
- A normed space X is said to be a Banach space if for every Cauchy sequence there exists an element x in X such that .
Read more about this topic: Banach Space
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)