Definition
A Banach space is a vector space X over the field of real numbers R or complex numbers C which is equipped with a norm and which is complete with respect to that norm. Formally, the definition of a Banach space is :
- A normed space X is said to be a Banach space if for every Cauchy sequence there exists an element x in X such that .
Read more about this topic: Banach Space
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)