Definition
A Banach space is a vector space X over the field of real numbers R or complex numbers C which is equipped with a norm and which is complete with respect to that norm. Formally, the definition of a Banach space is :
- A normed space X is said to be a Banach space if for every Cauchy sequence there exists an element x in X such that .
Read more about this topic: Banach Space
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)