Spectral Theory
Unital Banach algebras over the complex field provide a general setting to develop spectral theory. The spectrum of an element x ∈ A, denoted by, consists of all those complex scalars λ such that x − λ1 is not invertible in A. The spectrum of any element x is a closed subset of the closed disc in C with radius ||x|| and center 0, and thus is compact. Moreover, the spectrum of an element x is non-empty and satisfies the spectral radius formula:
Given x ∈ A, the holomorphic functional calculus allows to define ƒ(x) ∈ A for any function ƒ holomorphic in a neighborhood of Furthermore, the spectral mapping theorem holds:
When the Banach algebra A is the algebra L(X) of bounded linear operators on a complex Banach space X (e.g., the algebra of square matrices), the notion of the spectrum in A coincides with the usual one in the operator theory. For ƒ ∈ C(X) (with a compact Hausdorff space X), one sees that:
The norm of a normal element x of a C*-algebra coincides with its spectral radius. This generalizes an analogous fact for normal operators.
Let A be a complex unital Banach algebra in which every non-zero element x is invertible (a division algebra). For every a ∈ A, there is λ ∈ C such that a − λ1 is not invertible (because the spectrum of a is not empty) hence a = λ1 : this algebra A is naturally isomorphic to C (the complex case of the Gelfand-Mazur theorem).
Read more about this topic: Banach Algebra
Famous quotes containing the words spectral and/or theory:
“How does one kill fear, I wonder? How do you shoot a spectre through the heart, slash off its spectral head, take it by its spectral throat?”
—Joseph Conrad (18571924)
“No one thinks anything silly is suitable when they are an adolescent. Such an enormous share of their own behavior is silly that they lose all proper perspective on silliness, like a baker who is nauseated by the sight of his own eclairs. This provides another good argument for the emerging theory that the best use of cryogenics is to freeze all human beings when they are between the ages of twelve and nineteen.”
—Anna Quindlen (20th century)