Topological Balls
One may talk about balls in any topological space X, not necessarily induced by a metric. An (open or closed) n-dimensional topological ball of X is any subset of X which is homeomorphic to an (open or closed) Euclidean n-ball. Topological n-balls are important in combinatorial topology, as the building blocks of cell complexes.
Any open topological n-ball is homeomorphic to the Cartesian space Rn and to the open unit n-cube . Any closed topological n-ball is homeomorphic to the closed n-cube n.
An n-ball is homeomorphic to an m-ball if and only if n = m. The homeomorphisms between an open n-ball B and Rn can be classified in two classes, that can be identified with the two possible topological orientations of B.
A topological n-ball need not be smooth; if it is smooth, it need not be diffeomorphic to a Euclidean n-ball.
Read more about this topic: Ball (mathematics)
Famous quotes containing the word balls:
“look the spangles
that sleep all the year in a dark box
dreaming of being taken out and allowed to shine,
the balls the chains red and gold the fluffy threads,
put up your little arms
and ill give them all to you to hold”
—E.E. (Edward Estlin)