Properties
An axiomatic system is said to be consistent if it lacks contradiction, i.e. the ability to derive both a statement and its negation from the system's axioms.
In an axiomatic system, an axiom is called independent if it is not a theorem that can be derived from other axioms in the system. A system will be called independent if each of its underlying axioms is independent. Although independence is not a necessary requirement for a system, consistency is.
An axiomatic system will be called complete if for every statement, either itself or its negation is derivable.
Read more about this topic: Axiomatic System
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)