In NBG Class Theory
In von Neumann–Bernays–Gödel set theory, a distinction is made between sets and classes. A class C is a set if and only if it belongs to some class E. In this theory, there is a theorem schema that reads:
that is:
- There is a class D such that any class C is a member of D if and only if C is a set that satisfies P.
This theorem schema is itself a restricted form of comprehension, which avoids Russell's paradox because of the requirement that C be a set. Then specification for sets themselves can be written as a single axiom:
that is:
- Given any class D and any set A, there is a set B whose members are precisely those classes that are members of both A and D;
or even more simply:
- The intersection of a class D and a set A is itself a set B.
In this axiom, the predicate P is replaced by the class D, which can be quantified over.
Read more about this topic: Axiom Schema Of Specification
Famous quotes containing the words class and/or theory:
“You must drop all your democracy. You must not believe in the people. One class is no better than another. It must be a case of Wisdom, or Truth. Let the working classes be working classes. That is the truth. There must be an aristocracy of people who have wisdom, and there must be a Ruler: a Kaiser: no Presidents and democracies.”
—D.H. (David Herbert)
“Thus the theory of description matters most.
It is the theory of the word for those
For whom the word is the making of the world,
The buzzing world and lisping firmament.”
—Wallace Stevens (18791955)