Axiom Schema of Specification - in NBG Class Theory

In NBG Class Theory

In von Neumann–Bernays–Gödel set theory, a distinction is made between sets and classes. A class C is a set if and only if it belongs to some class E. In this theory, there is a theorem schema that reads:

that is:

There is a class D such that any class C is a member of D if and only if C is a set that satisfies P.

This theorem schema is itself a restricted form of comprehension, which avoids Russell's paradox because of the requirement that C be a set. Then specification for sets themselves can be written as a single axiom:

that is:

Given any class D and any set A, there is a set B whose members are precisely those classes that are members of both A and D;

or even more simply:

The intersection of a class D and a set A is itself a set B.

In this axiom, the predicate P is replaced by the class D, which can be quantified over.

Read more about this topic:  Axiom Schema Of Specification

Famous quotes containing the words class and/or theory:

    During the long ages of class rule, which are just beginning to cease, only one form of sovereignty has been assigned to all men—that, namely, over all women. Upon these feeble and inferior companions all men were permitted to avenge the indignities they suffered from so many men to whom they were forced to submit.
    Mary Putnam Jacobi (1842–1906)

    Could Shakespeare give a theory of Shakespeare?
    Ralph Waldo Emerson (1803–1882)