Formal Statement
In the formal language of the Zermelo–Fraenkel axioms, the axiom reads:
or in words:
- Given any set A and any set B, there is a set C such that, given any set D, D is a member of C if and only if D is equal to A or D is equal to B.
or in simpler words:
- Given two sets, there is a set whose members are exactly the two given sets.
Read more about this topic: Axiom Of Pairing
Famous quotes containing the words formal and/or statement:
“The spiritual kinship between Lincoln and Whitman was founded upon their Americanism, their essential Westernism. Whitman had grown up without much formal education; Lincoln had scarcely any education. One had become the notable poet of the day; one the orator of the Gettsyburg Address. It was inevitable that Whitman as a poet should turn with a feeling of kinship to Lincoln, and even without any association or contact feel that Lincoln was his.”
—Edgar Lee Masters (18691950)
“Truth is that concordance of an abstract statement with the ideal limit towards which endless investigation would tend to bring scientific belief, which concordance the abstract statement may possess by virtue of the confession of its inaccuracy and one-sidedness, and this confession is an essential ingredient of truth.”
—Charles Sanders Peirce (18391914)