Interpretation and Consequences
This axiom is closely related to the standard construction of the naturals in set theory, in which the successor of x is defined as x ∪ {x}. If x is a set, then it follows from the other axioms of set theory that this successor is also a uniquely defined set. Successors are used to define the usual set-theoretic encoding of the natural numbers. In this encoding, zero is the empty set:
- 0 = {}.
The number 1 is the successor of 0:
- 1 = 0 ∪ {0} = {} ∪ {0} = {0}.
Likewise, 2 is the successor of 1:
- 2 = 1 ∪ {1} = {0} ∪ {1} = {0,1},
and so on. A consequence of this definition is that every natural number is equal to the set of all preceding natural numbers.
This construction forms the natural numbers. However, the other axioms are insufficient to prove the existence of the set of all natural numbers. Therefore its existence is taken as an axiom—the axiom of infinity. This axiom asserts that there is a set I that contains 0 and is closed under the operation of taking the successor; that is, for each element of I, the successor of that element is also in I.
Thus the essence of the axiom is:
- There is a set, I, that includes all the natural numbers.
The axiom of infinity is also one of the von Neumann–Bernays–Gödel axioms.
Read more about this topic: Axiom Of Infinity
Famous quotes containing the words interpretation and and/or consequences:
“The syntactic component of a grammar must specify, for each sentence, a deep structure that determines its semantic interpretation and a surface structure that determines its phonetic interpretation.”
—Noam Chomsky (b. 1928)
“We are still barely conscious of how harmful it is to treat children in a degrading manner. Treating them with respect and recognizing the consequences of their being humiliated are by no means intellectual matters; otherwise, their importance would long since have been generally recognized.”
—Alice Miller (20th century)