Axiom of Extensionality - Formal Statement

Formal Statement

In the formal language of the Zermelo–Fraenkel axioms, the axiom reads:

or in words:

Given any set A and any set B, if for every set C, C is a member of A if and only if C is a member of B, then A is equal to B.

(It is not really essential that C here be a set — but in ZF, everything is. See Ur-elements below for when this is violated.)

The converse, of this axiom follows from the substitution property of equality.

Read more about this topic:  Axiom Of Extensionality

Famous quotes containing the words formal and/or statement:

    The conviction that the best way to prepare children for a harsh, rapidly changing world is to introduce formal instruction at an early age is wrong. There is simply no evidence to support it, and considerable evidence against it. Starting children early academically has not worked in the past and is not working now.
    David Elkind (20th century)

    The new statement will comprise the skepticisms, as well as the faiths of society, and out of unbeliefs a creed shall be formed. For, skepticisms are not gratuitous or lawless, but are limitations of the affirmative statement, and the new philosophy must take them in, and make affirmations outside of them, just as much as must include the oldest beliefs.
    Ralph Waldo Emerson (1803–1882)