In physics, and especially quantum field theory, an auxiliary field is one whose equations of motion admit a single solution. Therefore, the Lagrangian describing such a field contains an algebraic quadratic term and an arbitrary linear term, while it contains no kinetic terms (derivatives of the field):
.
The equation of motion for is: and the Lagrangian becomes: . Auxiliary fields do not propagate and hence the content of any theory remains unchanged by adding such fields by hand. If we have an initial Lagrangian describing a field then the Lagrangian describing both fields is:
.
Therefore, auxiliary fields can be employed to cancel quadratic terms in in and linearize the action
Examples of auxiliary fields are the complex scalar field F in a chiral superfield, the real scalar field D in a vector superfield, the scalar field B in BRST and the field in the Hubbard-Stratonovich transformation.
The quantum mechanical effect of adding an auxiliary field is the same as the classical, since the path integral over such a field is Gaussian. To wit:
- .
Famous quotes containing the word field:
“I learn immediately from any speaker how much he has already lived, through the poverty or the splendor of his speech. Life lies behind us as the quarry from whence we get tiles and copestones for the masonry of today. This is the way to learn grammar. Colleges and books only copy the language which the field and the work-yard made.”
—Ralph Waldo Emerson (18031882)