Autonomous Underwater Vehicle - Vehicle Designs

Vehicle Designs

Hundreds of different AUVs have been designed over the past 50 or so years, but only a few companies sell vehicles in any significant numbers. There are around 10 companies that sell AUVs on the international market, including Kongsberg Maritime, Hydroid (now owned by Kongsberg), Bluefin Robotics, Teledyne Gavia (previously known as Hafmynd), and International Submarine Engineering (ISE) Ltd.

Vehicles range in size from man portable lightweight AUVs to large diameter vehicles of over 10 metres length. Large vehicle have advantages in terms of endurance and sensor payload capacity; smaller vehicles benefit significantly from lower logistics (for example: support vessel footprint; launch and recovery systems).

Some manufacturers have benefited from domestic government sponsorship including Bluefin and Kongsberg. The market is effectively split into three areas: scientific (including universities and research agencies), commercial offshore (oil and gas etc.) and military application (mine countermeasures, battle space preparation). The majority of these roles utilize a similar design and operate in a cruise (torpedo-type) mode. They collect data while following a preplanned route at speeds between 1 and 4 knots.

Commercially available AUVs include various designs such as the small REMUS 100 AUV originally developed by Woods Hole Oceanographic Institution in the US and now produced commercially by Hydroid, Inc.; the larger HUGIN 1000 and 3000 AUVs developed by Kongsberg Maritime and Norwegian Defence Research Establishment; the Bluefin Robotics 12-and-21-inch-diameter (300 and 530 mm) vehicles and the International Submarine Engineering Ltd. Explorer. Most AUVs follow the traditional torpedo shape as this is seen as the best compromise between size, usable volume, hydrodynamic efficiency and ease of handling. There are some vehicles that make use of a modular design, enabling components to be changed easily by the operators.

The market is evolving and designs are now following commercial requirements rather than being purely developmental. Upcoming designs include hover-capable AUVs for inspection and light-intervention (primarily for the offshore energy applications), and hybrid AUV/ROV designs that switch between roles as part of their mission profile. Again, the market will be driven by financial requirements and the aim to save money and expensive ship time.

Today, while most AUVs are capable of unsupervised missions most operators remain within range of acoustic telemetry systems in order to maintain a close watch on their investment. This is not always possible. For example, Canada has recently taken delivery of two AUVs (ISE Explorers) to survey the sea floor underneath the Arctic ice in support of their claim under Article 76 of the United Nations Convention of the Law of the Sea. Also, ultra-low-power, long-range variants such as underwater gliders are becoming capable of operating unattended for weeks or months in littoral and open ocean areas, periodically relaying data by satellite to shore, before returning to be picked up.

As of 2008, a new class of AUVs are being developed, which mimic designs found in nature. Although most are currently in their experimental stages, these biomimetic (or bionic) vehicles are able to achieve higher degrees of efficiency in propulsion and maneuverability by copying successful designs in nature. Two such vehicles are Festo's AquaJelly and Evologics' Bionik Manta.

Read more about this topic:  Autonomous Underwater Vehicle

Famous quotes containing the words vehicle and/or designs:

    In all Works of This, and of the Dramatic Kind, STORY, or AMUSEMENT, should be considered as little more than the Vehicle to the more necessary INSTRUCTION.
    Samuel Richardson (1689–1761)

    His designs were strictly honourable, as the phrase is; that is, to rob a lady of her fortune by way of marriage.
    Henry Fielding (1707–1754)