Related Problems
A simpler, but related, problem is proof verification, where an existing proof for a theorem is certified valid. For this, it is generally required that each individual proof step can be verified by a primitive recursive function or program, and hence the problem is always decidable.
Since the proofs generated by automated theorem provers are typically very large, the problem of proof compression is crucial and various techniques aiming at making the prover's output smaller, and consequently more easily understandable and checkable, have been developed.
Proof assistants require a human user to give hints to the system. Depending on the degree of automation, the prover can essentially be reduced to a proof checker, with the user providing the proof in a formal way, or significant proof tasks can be performed automatically. Interactive provers are used for a variety of tasks, but even fully automatic systems have proven a number of interesting and hard theorems, including some that have eluded human mathematicians for a long time. However, these successes are sporadic, and work on hard problems usually requires a proficient user.
Another distinction is sometimes drawn between theorem proving and other techniques, where a process is considered to be theorem proving if it consists of a traditional proof, starting with axioms and producing new inference steps using rules of inference. Other techniques would include model checking, which, in the simplest case, involves brute-force enumeration of many possible states (although the actual implementation of model checkers requires much cleverness, and does not simply reduce to brute force).
There are hybrid theorem proving systems which use model checking as an inference rule. There are also programs which were written to prove a particular theorem, with a (usually informal) proof that if the program finishes with a certain result, then the theorem is true. A good example of this was the machine-aided proof of the four color theorem, which was very controversial as the first claimed mathematical proof which was essentially impossible to verify by humans due to the enormous size of the program's calculation (such proofs are called non-surveyable proofs). Another example would be the proof that the game Connect Four is a win for the first player.
Read more about this topic: Automated Theorem Proving
Famous quotes containing the words related and/or problems:
“Becoming responsible adults is no longer a matter of whether children hang up their pajamas or put dirty towels in the hamper, but whether they care about themselves and othersand whether they see everyday chores as related to how we treat this planet.”
—Eda Le Shan (20th century)
“Its so easy during those first few months to think that the problems will never end. You feel as if your son will never sleep through the night, will always spit up food after eating, and will never learn to smileeven though you dont know any adults or even older children who still act this way.”
—Lawrence Kutner (20th century)