Aurora (astronomy) - Origin

Origin

The ultimate energy source of the aurora is the solar wind flowing past the Earth. The magnetosphere and solar wind consist of plasma (ionized gas), which conducts electricity. It is well known (since Michael Faraday's work around 1830) that when an electrical conductor is placed within a magnetic field while relative motion occurs in a direction that the conductor cuts across (or is cut by), rather than along, the lines of the magnetic field, an electric current is said to be induced into that conductor and electrons will flow within it. The amount of current flow is dependent upon a) the rate of relative motion, b) the strength of the magnetic field, c) the number of conductors ganged together and d) the distance between the conductor and the magnetic field, while the direction of flow is dependent upon the direction of relative motion. Dynamos make use of this basic process ("the dynamo effect"), any and all conductors, solid or otherwise are so affected including plasmas or other fluids.

In particular the solar wind and the magnetosphere are two electrically conducting fluids with such relative motion and should be able (in principle) to generate electric currents by "dynamo action", in the process also extracting energy from the flow of the solar wind. The process is hampered by the fact that plasmas conduct easily along magnetic field lines, but not so easily perpendicular to them. So it is important that a temporary magnetic connection be established between the field lines of the solar wind and those of the magnetosphere, by a process known as magnetic reconnection. It happens most easily with a southward slant of interplanetary field lines, because then field lines north of Earth approximately match the direction of field lines near the north magnetic pole (namely, into Earth), and similarly near the south magnetic pole. Indeed, active auroras (and related "substorms") are much more likely at such times. Electric currents originating in such way apparently give auroral electrons their energy. The magnetospheric plasma has an abundance of electrons: some are magnetically trapped, some reside in the magnetotail, and some exist in the upward extension of the ionosphere, which may extend (with diminishing density) some 25,000 km around Earth.

Bright auroras are generally associated with Birkeland currents (Schield et al., 1969; Zmuda and Armstrong, 1973) which flow down into the ionosphere on one side of the pole and out on the other. In between, some of the current connects directly through the ionospheric E layer (125 km); the rest ("region 2") detours, leaving again through field lines closer to the equator and closing through the "partial ring current" carried by magnetically trapped plasma. The ionosphere is an ohmic conductor, so such currents require a driving voltage, which some dynamo mechanism can supply. Electric field probes in orbit above the polar cap suggest voltages of the order of 40,000 volts, rising up to more than 200,000 volts during intense magnetic storms.

Ionospheric resistance has a complex nature, and leads to a secondary Hall current flow. By a strange twist of physics, the magnetic disturbance on the ground due to the main current almost cancels out, so most of the observed effect of auroras is due to a secondary current, the auroral electrojet. An auroral electrojet index (measured in nanotesla) is regularly derived from ground data and serves as a general measure of auroral activity.

Ohmic resistance is not the only obstacle to current flow in this circuit, however, the convergence of magnetic field lines near Earth creates a "mirror effect" that turns back most of the down-flowing electrons (where currents flow upward), inhibiting current-carrying capacity. To overcome this, part of the available voltage appears along the field line ("parallel to the field"), helping electrons overcome that obstacle by widening the bundle of trajectories reaching Earth; a similar "parallel potential" is used in "tandem mirror" plasma containment devices. A feature of such voltage is that it is concentrated near Earth (potential proportional to field intensity; Persson, 1963), and indeed, as deduced by Evans (1974) and confirmed by satellites, most auroral acceleration occurs below 10,000 km. Another indicator of parallel electric fields along field lines are beams of upward flowing O+ ions observed on auroral field lines.

Some O+ ions ("conics") also seem accelerated in different ways by plasma processes associated with the aurora. These ions are accelerated by plasma waves, in directions mainly perpendicular to the field lines. They therefore start at their own "mirror points" and can travel only upward. As they do so, the "mirror effect" transforms their directions of motion, from perpendicular to the line to lying on a cone around it, which gradually narrows down.

In addition, the aurora and associated currents produce a strong radio emission around 150 kHz known as auroral kilometric radiation (AKR, discovered in 1972). Ionospheric absorption makes AKR observable from space only.

These "parallel potentials" accelerate electrons to auroral energies and seem to be a major source of aurora. Other mechanisms have also been proposed, in particular, Alfvén waves, wave modes involving the magnetic field first noted by Hannes Alfvén (1942), which have been observed in the lab and in space. The question is whether these waves might just be a different way of looking at the above process, however, because this approach does not point out a different energy source, and many plasma bulk phenomena can also be described in terms of Alfvén waves.

Other processes are also involved in the aurora, and much remains to be learned. Auroral electrons created by large geomagnetic storms often seem to have energies below 1 keV, and are stopped higher up, near 200 km. Such low energies excite mainly the red line of oxygen, so that often such auroras are red. On the other hand, positive ions also reach the ionosphere at such time, with energies of 20–30 keV, suggesting they might be an "overflow" along magnetic field lines of the copious "ring current" ions accelerated at such times, by processes different from the ones described above.

Read more about this topic:  Aurora (astronomy)

Famous quotes containing the word origin:

    We have got rid of the fetish of the divine right of kings, and that slavery is of divine origin and authority. But the divine right of property has taken its place. The tendency plainly is towards ... “a government of the rich, by the rich, and for the rich.”
    Rutherford Birchard Hayes (1822–1893)

    All good poetry is the spontaneous overflow of powerful feelings: it takes its origin from emotion recollected in tranquillity.
    William Wordsworth (1770–1850)

    There are certain books in the world which every searcher for truth must know: the Bible, the Critique of Pure Reason, the Origin of Species, and Karl Marx’s Capital.
    —W.E.B. (William Edward Burghardt)