Atmosphere of Jupiter - Vertical Structure

Vertical Structure

The atmosphere of Jupiter is classified into four layers, by increasing altitude: the troposphere, stratosphere, thermosphere and exosphere. Unlike the Earth's atmosphere, Jupiter's lacks a mesosphere. Jupiter does not have a solid surface, and the lowest atmospheric layer, the troposphere, smoothly transitions into the planet's fluid interior. This is a result of having temperatures and the pressures well above those of the critical points for hydrogen and helium, meaning that there is no sharp boundary between gas and liquid phases. Hydrogen becomes a supercritical fluid at around 12 bars pressure.

Since the lower boundary of the atmosphere is ill-defined, the pressure level of 10 bars, at an altitude of about 90 km below the 1 bar with a temperature of around 340 K, is commonly treated as the base of the troposphere. In scientific literature, the 1 bar pressure level is usually chosen as a zero point for altitudes—a "surface" of Jupiter. As with Earth, the top atmospheric layer, the exosphere, does not have a well defined upper boundary. The density gradually decreases until it smoothly transitions into the interplanetary medium approximately 5,000 km above the "surface".

The vertical temperature variations in the Jovian atmosphere are similar to those of the atmosphere of Earth. The temperature of the troposphere decreases with height until it reaches a minimum at the tropopause, which is the boundary between the troposphere and stratosphere. On Jupiter, the tropopause is approximately 50 km above the visible clouds (or 1 bar level), where the pressure and temperature are about 0.1 bar and 110 K. In the stratosphere, the temperatures rise to about 200 K at the transition into the thermosphere, at an altitude and pressure of around 320 km and 1 μbar. In the thermosphere, temperatures continue to rise, eventually reaching 1000 K at about 1000 km, where pressure is about 1 nbar.

Jupiter's troposphere contains a complicated cloud structure. The upper clouds, located in the pressure range 0.6–0.9 bar, are made of ammonia ice. Below these ammonia ice clouds, denser clouds made of ammonium hydrosulfide or ammonium sulfide (between 1–2 bar) and water (3–7 bar) are thought to exist. There are no methane clouds as the temperatures are too high for it to condense. The water clouds form the densest layer of clouds and have the strongest influence on the dynamics of the atmosphere. This is a result of the higher condensation heat of water and higher water abundance as compared to the ammonia and hydrogen sulfide (oxygen is a more abundant chemical element than either nitrogen or sulfur). Various tropospheric (at 200–500 mbar) and stratospheric (at 10–100 mbar) haze layers reside above the main cloud layers. The latter are made from condensed heavy polycyclic aromatic hydrocarbons or hydrazine, which are generated in the upper stratosphere (1–100 μbar) from methane under the influence of the solar ultraviolet radiation (UV). The methane abundance relative to molecular hydrogen in the stratosphere is about 10−4, while the abundance ratio of other light hydrocarbons, like ethane and acetylene, to molecular hydrogen is about 10−6.

Jupiter's thermosphere is located at pressures lower than 1 μbar and demonstrates such phenomena as airglow, polar aurorae and X-ray emissions. Within it lie layers of increased electron and ion density that form the ionosphere. The high temperatures prevalent in the thermosphere (800–1000 K) have not been fully explained yet; existing models predict a temperature no higher than about 400 K. They may be caused by absorption of high-energy solar radiation (UV or X-ray), by heating from the charged particles precipitating from the Jovian magnetosphere, or by dissipation of upward-propagating gravity waves. The thermosphere and exosphere at the poles and at low latitudes emit X-rays, which were first observed by the Einstein Observatory in 1983. The energetic particles coming from Jupiter's magnetosphere create bright auroral ovals, which encircle the poles. Unlike their terrestrial analogs, which appear only during magnetic storms, aurorae are permanent features of Jupiter's atmosphere. The thermosphere was the first place outside the Earth where the trihydrogen cation (H+
3) was discovered. This ion emits strongly in the mid-infrared part of the spectrum, at wavelengths between 3 and 5 μm; this is the main cooling mechanism of the thermosphere.

Read more about this topic:  Atmosphere Of Jupiter

Famous quotes containing the words vertical and/or structure:

    I tell you, hopeless grief is passionless;
    That only men incredulous of despair,
    Half-taught in anguish, through the midnight air
    Beat upward to God’s throne in loud access
    Of shrieking and reproach. Full desertness,
    In souls as countries, lieth silent-bare
    Under the blanching, vertical eye-glare
    Of the absolute Heavens.
    Elizabeth Barrett Browning (1806–1861)

    When a house is tottering to its fall,
    The strain lies heaviest on the weakest part,
    One tiny crack throughout the structure spreads,
    And its own weight soon brings it toppling down.
    Ovid (Publius Ovidius Naso)