Atlas (topology) - Transition Maps

Transition Maps

A transition map provides a way of comparing two charts of an atlas. To make this comparison, we consider the composition of one chart with the inverse of the other. This composition is not well-defined unless we restrict both charts to the intersection of their domains of definition. (For example, if we have a chart of Europe and a chart of Russia, then we can compare these two charts on their overlap, namely the European part of Russia.)

To be more precise, suppose that and are two charts for a manifold M such that is non-empty. The transition map is the map defined by

Note that since and are both homeomorphisms, the transition map is also a homeomorphism.

Read more about this topic:  Atlas (topology)

Famous quotes containing the words transition and/or maps:

    There is not any present moment that is unconnected with some future one. The life of every man is a continued chain of incidents, each link of which hangs upon the former. The transition from cause to effect, from event to event, is often carried on by secret steps, which our foresight cannot divine, and our sagacity is unable to trace. Evil may at some future period bring forth good; and good may bring forth evil, both equally unexpected.
    Joseph Addison (1672–1719)

    And at least you know

    That maps are of time, not place, so far as the army
    Happens to be concerned—the reason being,
    Is one which need not delay us.
    Henry Reed (1914–1986)