Atlas (topology) - More Structure

More Structure

One often desires more structure on a manifold than simply the topological structure. For example, if one would like an unambiguous notion of differentiation of functions on a manifold, then it is necessary to construct an atlas whose transition functions are differentiable. Such a manifold is called differentiable. Given a differentiable manifold, one can unambiguously define the notion of tangent vectors and then directional derivatives.

If each transition function is a smooth map, then the atlas is called a smooth atlas, and the manifold itself is called smooth. Alternatively, one could require that the transition maps have only k continuous derivatives in which case the atlas is said to be .

Very generally, if each transition function belongs to a pseudo-group of homeomorphisms of Euclidean space, then the atlas is called a -atlas.

Read more about this topic:  Atlas (topology)

Famous quotes containing the word structure:

    What is the structure of government that will best guard against the precipitate counsels and factious combinations for unjust purposes, without a sacrifice of the fundamental principle of republicanism?
    James Madison (1751–1836)

    Agnosticism is a perfectly respectable and tenable philosophical position; it is not dogmatic and makes no pronouncements about the ultimate truths of the universe. It remains open to evidence and persuasion; lacking faith, it nevertheless does not deride faith. Atheism, on the other hand, is as unyielding and dogmatic about religious belief as true believers are about heathens. It tries to use reason to demolish a structure that is not built upon reason.
    Sydney J. Harris (1917–1986)