Asymptotic Equipartition Property - Definition

Definition

Given a discrete-time stationary ergodic stochastic process on the probability space, AEP is an assertion that

-\frac{1}{n} \log p(X_1^n) \to H(X)
\quad \mbox{ as } \quad n\to\infty

where denotes the process limited to duration, and or simply denotes the entropy rate of, which must exist for all discrete-time stationary processes including the ergodic ones. AEP is proved for finite-valued (i.e. ) stationary ergodic stochastic processes in the Shannon-McMillan-Breiman theorem using the ergodic theory and for any i.i.d. sources directly using the law of large numbers in both the discrete-valued case (where is simply the entropy of a symbol) and the continuous-valued case (where is the differential entropy instead). The definition of AEP can also be extended for certain classes of continuous-time stochastic processes for which a typical set exists for long enough observation time. The convergence is proven almost sure in all cases.

Read more about this topic:  Asymptotic Equipartition Property

Famous quotes containing the word definition:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)