Asymptotic Equipartition Property - Definition

Definition

Given a discrete-time stationary ergodic stochastic process on the probability space, AEP is an assertion that

-\frac{1}{n} \log p(X_1^n) \to H(X)
\quad \mbox{ as } \quad n\to\infty

where denotes the process limited to duration, and or simply denotes the entropy rate of, which must exist for all discrete-time stationary processes including the ergodic ones. AEP is proved for finite-valued (i.e. ) stationary ergodic stochastic processes in the Shannon-McMillan-Breiman theorem using the ergodic theory and for any i.i.d. sources directly using the law of large numbers in both the discrete-valued case (where is simply the entropy of a symbol) and the continuous-valued case (where is the differential entropy instead). The definition of AEP can also be extended for certain classes of continuous-time stochastic processes for which a typical set exists for long enough observation time. The convergence is proven almost sure in all cases.

Read more about this topic:  Asymptotic Equipartition Property

Famous quotes containing the word definition:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)