Formal Definition
Let R be a fixed commutative ring. An associative R-algebra is an additive abelian group A which has the structure of both a ring and an R-module in such a way that ring multiplication is R-bilinear:
for all r ∈ R and x, y ∈ A. We say A is unital if it contains an element 1 such that
for all x ∈ A. Note that such an element 1 must be unique if it exists at all.
If A itself is commutative (as a ring) then it is called a commutative R-algebra.
Read more about this topic: Associative Algebra
Famous quotes containing the words formal and/or definition:
“There must be a profound recognition that parents are the first teachers and that education begins before formal schooling and is deeply rooted in the values, traditions, and norms of family and culture.”
—Sara Lawrence Lightfoot (20th century)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)