Overview
Aspect-oriented programming entails breaking down program logic into distinct parts (so-called concerns, cohesive areas of functionality). Nearly all programming paradigms support some level of grouping and encapsulation of concerns into separate, independent entities by providing abstractions (e.g., procedures, modules, classes, methods) that can be used for implementing, abstracting and composing these concerns. But some concerns defy these forms of implementation and are called crosscutting concerns because they "cut across" multiple abstractions in a program.
Logging exemplifies a crosscutting concern because a logging strategy necessarily affects every logged part of the system. Logging thereby crosscuts all logged classes and methods.
All AOP implementations have some crosscutting expressions that encapsulate each concern in one place. The difference between implementations lies in the power, safety, and usability of the constructs provided. For example, interceptors that specify the methods to intercept express a limited form of crosscutting, without much support for type-safety or debugging. AspectJ has a number of such expressions and encapsulates them in a special class, an aspect. For example, an aspect can alter the behavior of the base code (the non-aspect part of a program) by applying advice (additional behavior) at various join points (points in a program) specified in a quantification or query called a pointcut (that detects whether a given join point matches). An aspect can also make binary-compatible structural changes to other classes, like adding members or parents.
Read more about this topic: Aspect-oriented Programming