Alternative Statement
An alternative version of the reciprocity law, leading to the Langlands program, connects Artin L-functions associated to abelian extensions of a number field with Hecke L-functions associated to characters of the idèle class group.
A Hecke character (or Größencharakter) of a number field K is defined to be a quasicharacter of the idèle class group of K. Robert Langlands interpreted Hecke characters as automorphic forms on the reductive algebraic group GL(1) over the ring of adeles of K.
Let E⁄K be an abelian Galois extension with Galois group G. Then for any character σ: G → C× (i.e. one-dimensional complex representation of the group G), there exists a Hecke character χ of K such that
where the left hand side is the Artin L-function associated to the extension with character σ and the right hand side is the Hecke L-function associated with χ, Section 7.D of.
The formulation of the Artin reciprocity law as an equality of L-functions allows formulation of a generalisation to n-dimensional representations, though a direct correspondence is still lacking.
Read more about this topic: Artin Reciprocity Law
Famous quotes containing the words alternative and/or statement:
“A mental disease has swept the planet: banalization.... Presented with the alternative of love or a garbage disposal unit, young people of all countries have chosen the garbage disposal unit.”
—Ivan Chtcheglov (b. 1934)
“Truth is used to vitalize a statement rather than devitalize it. Truth implies more than a simple statement of fact. I dont have any whisky, may be a fact but it is not a truth.”
—William Burroughs (b. 1914)