Advantages, Disadvantages, and Efficiency
Advantages of solar fuel production through artificial photosynthesis include:
- The solar energy can be immediately converted and stored. In photovoltaic cells, sunlight is converted into electricity and then converted again into chemical energy for storage, with some necessary loss of energy associated with the second conversion.
- The byproducts of these reactions are environmentally friendly. Artificially photosynthesized fuel would be a carbon-neutral source of energy, which could be used for transportation or homes.
Disadvantages include:
- Materials used for artificial photosynthesis often corrode in water, so they may be less stable than photovoltaics over long periods of time. Most hydrogen catalysts are very sensitive to oxygen, being inactivated or degraded in its presence; also, photodamage may occur over time.
- The overall cost is not yet advantageous enough to compete with fossil fuels as a commercially viable source of energy.
A concern usually addressed in catalyst design is efficiency, in particular how much of the incident light can be used in a system in practice. This is comparable with photosynthetic efficiency, where light-to-chemical-energy conversion is measured. Photosynthetic organisms are able to collect about 50% of incident solar radiation, but photochemical cells could use materials absorbing a wider range of solar radiation. It is however not straightforward to compare overall fuel production between natural and artificial systems: for example, plants have a theoretical threshold of 12% efficiency of glucose formation from photosynthesis, while a carbon reducing catalyst may go beyond this value. However, plants are efficient in using CO2 at atmospheric concentrations, something that artificial catalysts still cannot perform.
Read more about this topic: Artificial Photosynthesis
Famous quotes containing the word efficiency:
“Nothing comes to pass in nature, which can be set down to a flaw therein; for nature is always the same and everywhere one and the same in her efficiency and power of action; that is, natures laws and ordinances whereby all things come to pass and change from one form to another, are everywhere and always; so that there should be one and the same method of understanding the nature of all things whatsoever, namely, through natures universal laws and rules.”
—Baruch (Benedict)