Interpretations of The Theorem
Although Arrow's theorem is a mathematical result, it is often expressed in a non-mathematical way with a statement such as "No voting method is fair," "Every ranked voting method is flawed," or "The only voting method that isn't flawed is a dictatorship". These statements are simplifications of Arrow's result which are not universally considered to be true. What Arrow's theorem does state is that a deterministic preferential voting mechanism - that is, one where a preference order is the only information in a vote, and any possible set of votes gives a unique result - cannot comply with all of the conditions given above simultaneously.
Arrow did use the term "fair" to refer to his criteria. Indeed, Pareto efficiency, as well as the demand for non-imposition, seems acceptable to most people.
Various theorists have suggested weakening the IIA criterion as a way out of the paradox. Proponents of ranked voting methods contend that the IIA is an unreasonably strong criterion. It is the one breached in most useful voting systems. Advocates of this position point out that failure of the standard IIA criterion is trivially implied by the possibility of cyclic preferences. If voters cast ballots as follows:
- 1 vote for A > B > C
- 1 vote for B > C > A
- 1 vote for C > A > B
then the pairwise majority preference of the group is that A wins over B, B wins over C, and C wins over A: these yield rock-paper-scissors preferences for any pairwise comparison. In this circumstance, any aggregation rule that satisfies the very basic majoritarian requirement that a candidate who receives a majority of votes must win the election, will fail the IIA criterion, if social preference is required to be transitive (or acyclic). To see this, suppose that such a rule satisfies IIA. Since majority preferences are respected, the society prefers A to B (two votes for A>B and one for B>A), B to C, and C to A. Thus a cycle is generated, which contradicts the assumption that social preference is transitive.
So, what Arrow's theorem really shows is that any majority-wins voting system is a non-trivial game, and that game theory should be used to predict the outcome of most voting mechanisms. This could be seen as a discouraging result, because a game need not have efficient equilibria, e.g., a ballot could result in an alternative nobody really wanted in the first place, yet everybody voted for.
Remark: Scalar rankings from a vector of attributes and the IIA property. The IIA property might not be satisfied in human decision-making of realistic complexity because the scalar preference ranking is effectively derived from the weighting—not usually explicit—of a vector of attributes (one book dealing with the Arrow theorem invites the reader to consider the related problem of creating a scalar measure for the track and field decathlon event—e.g. how does one make scoring 600 points in the discus event "commensurable" with scoring 600 points in the 1500 m race) and this scalar ranking can depend sensitively on the weighting of different attributes, with the tacit weighting itself affected by the context and contrast created by apparently "irrelevant" choices. Edward MacNeal discusses this sensitivity problem with respect to the ranking of "most livable city" in the chapter "Surveys" of his book MathSemantics: making numbers talk sense (1994).
Read more about this topic: Arrow's Impossibility Theorem
Famous quotes containing the word theorem:
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)