Archimedes Palimpsest - Mathematical Content

Mathematical Content

The most remarkable of the above works is The Method, of which the palimpsest contains the only known copy.

In his other works, Archimedes often proves the equality of two areas or volumes with Eudoxus' method of exhaustion, an ancient Greek counterpart of the modern method of limits. Since the Greeks were aware that some numbers were irrational, their notion of a real number was a quantity Q approximated by two sequences, one providing an upper bound and the other a lower bound. If you find two sequences U and L, with U always bigger than Q, and L always smaller than Q, and if the two sequences eventually came closer together than any prespecified amount, then Q is found, or exhausted, by U and L.

Archimedes used exhaustion to prove his theorems. This involved approximating the figure whose area he wanted to compute into sections of known area, which provide upper and lower bounds for the area of the figure. He then proved that the two bounds become equal when the subdivision becomes arbitrarily fine. These proofs, still considered to be rigorous and correct, used geometry with rare brilliance. Later writers often criticized Archimedes for not explaining how he arrived at his results in the first place. This explanation is contained in The Method.

The method that Archimedes describes was based upon his investigations of physics, on the center of mass and the law of the lever. He compared the area or volume of a figure of which he knew the total mass and center of mass with the area or volume of another figure he did not know anything about. He divided both figures into infinitely many slices of infinitesimal width, and balanced each slice of one figure against a corresponding slice of the second figure on a lever. The essential point is that the two figures are oriented differently, so that the corresponding slices are at different distances from the fulcrum, and the condition that the slices balance is not the same as the condition that they are equal.

Once he shows that each slice of one figure balances each slice of the other figure, he concludes that the two figures balance each other. But the center of mass of one figure is known, and the total mass can be placed at this center and it still balances. The second figure has an unknown mass, but the position of its center of mass might be restricted to lie at a certain distance from the fulcrum by a geometrical argument, by symmetry. The condition that the two figures balance now allows him to calculate the total mass of the other figure. He considered this method as a useful heuristic but always made sure to prove the results he found using exhaustion, since the method did not provide upper and lower bounds.

Using this method, Archimedes was able to solve several problems now treated by integral calculus, which was given its modern form in the seventeenth century by Isaac Newton and Gottfried Leibniz. Among those problems were that of calculating the center of gravity of a solid hemisphere, the center of gravity of a frustum of a circular paraboloid, and the area of a region bounded by a parabola and one of its secant lines. (For explicit details, see Archimedes' use of infinitesimals.)

When rigorously proving theorems, Archimedes often used what are now called Riemann sums. In "On the Sphere and Cylinder," he gives upper and lower bounds for the surface area of a sphere by cutting the sphere into sections of equal width. He then bounds the area of each section by the area of an inscribed and circumscribed cone, which he proves have a larger and smaller area correspondingly. He adds the areas of the cones, which is a type of Riemann sum for the area of the sphere considered as a surface of revolution.

But there are two essential differences between Archimedes' method and 19th-century methods:

  1. Archimedes did not know about differentiation, so he could not calculate any integrals other than those that came from center-of-mass considerations, by symmetry. While he had a notion of linearity, to find the volume of a sphere he had to balance two figures at the same time; he never figured out how to change variables or integrate by parts.
  2. When calculating approximating sums, he imposed the further constraint that the sums provide rigorous upper and lower bounds. This was required because the Greeks lacked algebraic methods that could establish that error terms in an approximation are small.

A problem solved exclusively in the Method is the calculation of the volume of a cylindrical wedge, a result that reappears as theorem XVII (schema XIX) of Kepler's Stereometria.

Some pages of the Method remained unused by the author of the palimpsest and thus they are still lost. Between them, an announced result concerned the volume of the intersection of two cylinders, a figure that Apostol and Mnatsakanian have renamed n = 4 Archimedean globe (and the half of it, n = 4 Archimedean dome), whose volume relates to the n-polygonal pyramid.

In Heiberg's time, much attention was paid to Archimedes' brilliant use of infinitesimals to solve problems about areas, volumes, and centers of gravity. Less attention was given to the Stomachion, a problem treated in the palimpsest that appears to deal with a children's puzzle. Reviel Netz of Stanford University has argued that Archimedes discussed the number of ways to solve the puzzle, that is, to put the pieces back in their box. No pieces have been identified as such; the rules for placement, such as whether pieces are allowed to be turned over, are not known; and there is doubt about the board. The board illustrated here, as also by Netz, is one proposed by Heinrich Suter in translating an unpointed Arabic text in which twice and equals are easily confused; Suter makes at least a typographical error at the crucial point, equating the lengths of a side and diagonal, in which case the board cannot be a rectangle. But, as the diagonals of a square intersect at right angles, the presence of right triangles makes the first proposition of Archimedes' Stomachion immediate. Rather, the first proposition sets up a board consisting of two squares side by side (as in Tangram). A reconciliation of the Suter board with this Codex board was published by Richard Dixon Oldham, FRS, in Nature in March, 1926, sparking a Stomachion craze that year. Modern combinatorics reveals that the number of ways to place the pieces of the Suter board to reform their square, allowing them to be turned over, is 17,152; the number is considerably smaller – 64 – if pieces are not allowed to be turned over. The sharpness of some angles in the Suter board makes fabrication difficult, while play could be awkward if pieces with sharp points are turned over. For the Codex board (again as with Tangram) there are three ways to pack the pieces: as two unit squares side by side; as two unit squares one on top of the other; and as a single square of side the square root of two. But the key to these packings is forming isosceles right triangles, just as Socrates gets the slave boy to consider in Plato's Meno – Socrates was arguing for knowledge by recollection, and here pattern recognition and memory seem more pertinent than a count of solutions. The Codex board can be found as an extension of Socrates' argument in a seven-by-seven-square grid, suggesting an iterative construction of the side-diameter numbers that give rational approximations to the square root of two. The fragmentary state of the palimpsest leaves much in doubt. But it would certainly add to the mystery had Archimedes used the Suter board in preference to the Codex board. However, if Netz is right, this may have been the most sophisticated work in the field of combinatorics in Greek antiquity. Either Archimedes used the Suter board, the pieces of which were allowed to be turned over, or the statistics of the Suter board are irrelevant.

Read more about this topic:  Archimedes Palimpsest

Famous quotes containing the words mathematical and/or content:

    An accurate charting of the American woman’s progress through history might look more like a corkscrew tilted slightly to one side, its loops inching closer to the line of freedom with the passage of time—but like a mathematical curve approaching infinity, never touching its goal. . . . Each time, the spiral turns her back just short of the finish line.
    Susan Faludi (20th century)

    You are not satisfied unless form is so strictly divorced from content that you can comprehend the one without almost without bothering to read the other.
    Samuel Beckett (1906–1989)