Definition For Normed Fields
The qualifier "Archimedean" is also formulated in the theory of rank one valued fields and normed spaces over rank one valued fields as follows. Let F be a field endowed with an absolute value function, i.e., a function which associates the real number 0 with the field element 0 and associates a positive real number with each non-zero and satisfies and . Then, F is said to be Archimedean if for any non-zero there exists a natural number n such that
Similarly, a normed space is Archimedean if a sum of terms, each equal to a non-zero vector, has norm greater than one for sufficiently large . A field with an absolute value or a normed space is either Archimedean or satisfies the stronger condition, referred to as the ultrametric triangle inequality,
-
-
- ,
-
respectively. A field or normed space satisfying the ultrametric triangle inequality is called non-Archimedean.
The concept of a non-Archimedean normed linear space was introduced by A. F. Monna.
Read more about this topic: Archimedean Property
Famous quotes containing the words definition and/or fields:
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“East and west on fields forgotten
Bleach the bones of comrades slain,
Lovely lads and dead and rotten;
None that go return again.”
—A.E. (Alfred Edward)