Epsilon Terms
In the literature, an approximation ratio for a maximization (minimization) problem of c - ϵ (min: c + ϵ) means that the algorithm has an approximation ratio of c ∓ ϵ for arbitrary ϵ > 0 but that the ratio has not (or cannot) be shown for ϵ = 0. An example of this is the optimal inapproximability — inexistence of approximation — ratio of 7 / 8 + ϵ for satisfiable MAX-3SAT instances due to Johan Håstad. As mentioned previously, when c = 1, the problem is said to have a polynomial-time approximation scheme.
An ϵ-term may appear when an approximation algorithm introduces a multiplicative error and a constant error while the minimum optimum of instances of size n goes to infinity as n does. In this case, the approximation ratio is c ∓ k / OPT = c ∓ o(1) for some constants c and k. Given arbitrary ϵ > 0, one can choose a large enough N such that the term k / OPT < ϵ for every n ≥ N. For every fixed ϵ, instances of size n < N can be solved by brute force, thereby showing an approximation ratio — existence of approximation algorithms with a guarantee — of c ∓ ϵ for every ϵ > 0.
Read more about this topic: Approximation Algorithm
Famous quotes containing the word terms:
“It is not [the toddlers] job yet to consider other peoples feelings, he has to come to terms with his own first. If he hits you and you hit him back to show him what it feels like, you will have given a lesson he is not ready to learn. He will wail as if hitting was a totally new idea to him. He makes no connections between what he did to you and what you then did to him; between your feelings and his own.”
—Penelope Leach (20th century)