Anomalous Propagation - Radar

Radar

The position of the radar echoes depend heavily on the standard decrease of temperature hypothesis. However, the real atmosphere can vary greatly from the norm. Anomalous Propagation (AP) refers to false radar echoes usually observed when calm, stable atmospheric conditions, often associated with super refraction in a temperature inversion, direct the radar beam toward the ground. The processing program will then wrongly place the return echoes at the height and distance it would have been in normal conditions.

This type of false return is relatively easy to spot on a time loop if it is due to night cooling or marine inversion as one sees very strong echoes developing over an area, spreading in size laterally, not moving but varying greatly in intensity with time. After sunrise, the inversion disappears gradually and the area diminishes correspondingly. Inversion of temperature exists too ahead of warm fronts, and around thunderstorms' cold pool. Since precipitation exists in those circumstances, the abnormal propagation echoes are then mixed with real rain and/or targets of interest, which make them more difficult to separate.

Anomalous Propagation is different from ground clutter, ocean reflections (sea clutter), biological returns from birds and insects, debris, chaff, sand storms, volcanic eruption plumes, and other non-precipitation meteorological phenomena. Ground and sea clutters are permanent reflection from fixed areas on the surface with stable reflective characteristics. Biological scatterer gives weak echoes over a large surface. These can vary in size with time but not much in intensity. Debris and chaff are transient and move in height with time. They are all indicating something actually there and either relevant to the radar operator and/or readily explicable and theoretically able to be reproduced. AP in the sense of radar is colloquially known as "garbish" and ground clutter as "rubbage".

Doppler radars and Pulse-Doppler radars are extracting the velocities of the targets. Since AP comes from stables targets, it is possible to subtract the reflectivity data having a null speed and clean the radar images. Ground, sea clutter and the energy spike from the sun setting can be distinguished the same way but not other artifacts. This method is used in most modern radars, including air traffic control and weather radars.

Read more about this topic:  Anomalous Propagation

Famous quotes containing the word radar:

    So I begin to understand why my mother’s radar is so sensitive to criticism. She still treads the well-worn ruts of her youth, when her impression of mother was of a woman hard to please, frequently negative, and rarely satisfied with anyone—least of all herself.
    Melinda M. Marshall (20th century)