Regular Pairs
Let (m, n) be a pair of amicable numbers with m<n, and write m=gM and n=gN where g is the greatest common divisor of m and n. If M and N are both coprime to g and square free then the pair (m, n) is said to be regular, otherwise it is called irregular or exotic. If (m, n) is regular and M and N have i and j prime factors respectively, then (m, n) is said to be of type (i, j).
For example, with (m, n) = (220, 284), the greatest common divisor is 4 and so M = 55 and N = 71. Therefore (220, 284) is regular of type (2, 1).
Read more about this topic: Amicable Numbers
Famous quotes containing the word regular:
“He hung out of the window a long while looking up and down the street. The worlds second metropolis. In the brick houses and the dingy lamplight and the voices of a group of boys kidding and quarreling on the steps of a house opposite, in the regular firm tread of a policeman, he felt a marching like soldiers, like a sidewheeler going up the Hudson under the Palisades, like an election parade, through long streets towards something tall white full of colonnades and stately. Metropolis.”
—John Dos Passos (18961970)