Amicable Numbers - Other Results

Other Results

In every known case, the numbers of a pair are either both even or both odd. It is not known whether an even-odd pair of amicable numbers exists, but if it does, the even number must either be a square number or twice one, and the odd number must be a square number. Also, every known pair shares at least one common factor, higher than 1. It is not known whether a pair of coprime amicable numbers exists, though if any does, the product of the two must be greater than 1067. Also, a pair of coprime amicable numbers cannot be generated by Thabit's formula (above), nor by any similar formula.

In 1955, Paul Erdős showed that the density of amicable numbers, relative to the positive integers, was 0.

Read more about this topic:  Amicable Numbers

Famous quotes containing the word results:

    The study and knowledge of the universe would somehow be lame and defective were no practical results to follow.
    Marcus Tullius Cicero (106–43 B.C.)

    For every life and every act
    Consequence of good and evil can be shown
    And as in time results of many deeds are blended
    So good and evil in the end become confounded.
    —T.S. (Thomas Stearns)