Parallelization
In the case of parallelization, Amdahl's law states that if P is the proportion of a program that can be made parallel (i.e., benefit from parallelization), and (1 − P) is the proportion that cannot be parallelized (remains serial), then the maximum speedup that can be achieved by using N processors is
In the limit, as N tends to infinity, the maximum speedup tends to 1 / (1 − P). In practice, performance to price ratio falls rapidly as N is increased once there is even a small component of (1 − P).
As an example, if P is 90%, then (1 − P) is 10%, and the problem can be sped up by a maximum of a factor of 10, no matter how large the value of N used. For this reason, parallel computing is only useful for either small numbers of processors, or problems with very high values of P: so-called embarrassingly parallel problems. A great part of the craft of parallel programming consists of attempting to reduce the component (1 – P) to the smallest possible value.
P can be estimated by using the measured speedup (SU) on a specific number of processors (NP) using
P estimated in this way can then be used in Amdahl's law to predict speedup for a different number of processors.
Read more about this topic: Amdahl's Law