The Effect of Mutation
Let ú be the mutation rate from allele A to some other allele a (the probability that a copy of gene A will become a during the DNA replication preceding meiosis). If is the frequency of the A allele in generation t, then is the frequency of the a allele in generation t, and if there are no other causes of gene frequency change (no natural selection, for example), then the change in allele frequency in one generation is
where is the frequency of the preceding generation. This tells us that the frequency of A decreases (and the frequency of a increases) by an amount that is proportional to the mutation rate ú and to the proportion p of all the genes that are still available to mutate. Thus gets smaller as the frequency of p itself decreases, because there are fewer and fewer A alleles to mutate into a alleles. We can make an approximation that, after n generations of mutation,
Read more about this topic: Allele Frequency
Famous quotes containing the word effect:
“As soon as I suspect a fine effect is being achieved by accident I lose interest. I am not interested ... in unskilled labor.... The scientific actor is an even worker. Any one may achieve on some rare occasion an outburst of genuine feeling, a gesture of imperishable beauty, a ringing accent of truth; but your scientific actor knows how he did it. He can repeat it again and again and again. He can be depended on.”
—Minnie Maddern Fiske (18651932)