Interpretation of Value
Allan variance is defined as one half of the time average of the squares of the differences between successive readings of the frequency deviation sampled over the sampling period. The Allan variance depends on the time period used between samples: therefore it is a function of the sample period, commonly denoted as τ, likewise the distribution being measured, and is displayed as a graph rather than a single number. A low Allan variance is a characteristic of a clock with good stability over the measured period.
Allan deviation is widely used for plots (conveniently in log-log format) and presentation of numbers. It is preferred as it gives the relative amplitude stability, allowing ease of comparison with other sources of errors.
An Allan deviation of 1.3×10−9 at observation time 1 s (i.e. τ = 1 s) should be interpreted as there being an instability in frequency between two observations a second apart with a relative root mean square (RMS) value of 1.3×10−9. For a 10-MHz clock, this would be equivalent to 13 mHz RMS movement. If the phase stability of an oscillator is needed then the time deviation variants should be consulted and used.
One may convert the Allan variance and other time-domain variances into frequency-domain measures of time (phase) and frequency stability. The following link shows these relationships and how to perform these conversions: http://www.allanstime.com/Publications/DWA/Conversion_from_Allan_variance_to_Spectral_Densities.pdf
Read more about this topic: Allan Variance
Famous quotes containing the words interpretation of:
“The earth is ready, the time is ripe, for the authoritative expression of the feminine as well as the masculine interpretation of that common social consensus which is slowly writing justice in the State and fraternity in the social order.”
—Anna Garlin Spencer (18511931)