Example
Assume that all floating point operations use the standard IEEE 754 double-precision arithmetic. Consider the sample (4, 7, 13, 16) from an infinite population. Based on this sample, the estimated population mean is 10, and the unbiased estimate of population variance is 30. Both Algorithm I and Algorithm II compute these values correctly. Next consider the sample (108 + 4, 108 + 7, 108 + 13, 108 + 16), which gives rise to the same estimated variance as the first sample. Algorithm II computes this variance estimate correctly, but Algorithm I returns 29.333333333333332 instead of 30. While this loss of precision may be tolerable and viewed as a minor flaw of Algorithm I, it is easy to find data that reveal a major flaw in the naive algorithm: Take the sample to be (109 + 4, 109 + 7, 109 + 13, 109 + 16). Again the estimated population variance of 30 is computed correctly by Algorithm II, but the naive algorithm now computes it as −170.66666666666666. This is a serious problem with Algorithm I and is due to catastrophic cancellation in the subtraction of two similar numbers at the final stage of the algorithm.
Read more about this topic: Algorithms For Calculating Variance
Famous quotes containing the word example:
“Our intellect is not the most subtle, the most powerful, the most appropriate, instrument for revealing the truth. It is life that, little by little, example by example, permits us to see that what is most important to our heart, or to our mind, is learned not by reasoning but through other agencies. Then it is that the intellect, observing their superiority, abdicates its control to them upon reasoned grounds and agrees to become their collaborator and lackey.”
—Marcel Proust (18711922)