Regular Representation, Trace and Determinant
Using the multiplication in F, the elements of the field F may be represented by n-by-n matrices
- A = A(x)=(aij)1 ≤ i, j ≤ n,
by requiring
Here e1, ..., en is a fixed basis for F, viewed as a Q-vector space. The rational numbers aij are uniquely determined by x and the choice of a basis since any element of F can be uniquely represented as a linear combination of the basis elements. This way of associating a matrix to any element of the field F is called the regular representation. The square matrix A represents the effect of multiplication by x in the given basis. It follows that if the element y of F is represented by a matrix B, then the product xy is represented by the matrix product AB. Invariants of matrices, such as the trace, determinant, and characteristic polynomial, depend solely on the field element x and not on the basis. In particular, the trace of the matrix A(x) is called the trace of the field element x and denoted Tr(x), and the determinant is called the norm of x and denoted N(x).
By definition, standard properties of traces and determinants of matrices carry over to Tr and N: Tr(x) is a linear function of x, as expressed by Tr(x + y) = Tr(x) + Tr(y), Tr(λx) = λ Tr(x), and the norm is a multiplicative homogeneous function of degree n: N(xy) = N(x) N(y), N(λx) = λn N(x). Here λ is a rational number, and x, y are any two elements of F.
The trace form derives is a bilinear form defined by means of the trace, as Tr(x y). The integral trace form, an integer-valued symmetric matrix is defined as tij = Tr(bibj), where b1, ..., bn is an integral basis for F. The discriminant of F is defined as det(t). It is an integer, and is an invariant property of the field F, not depending on the choice of integral basis.
The matrix associated to an element x of F can also be used to give other, equivalent descriptions of algebraic integers. An element x of F is an algebraic integer if and only if the characteristic polynomial pA of the matrix A associated to x is a monic polynomial with integer coefficients. Suppose that the matrix A that represents an element x has integer entries in some basis e. By the Cayley–Hamilton theorem, pA(A) = 0, and it follows that pA(x) = 0, so that x is an algebraic integer. Conversely, if x is an element of F which is a root of a monic polynomial with integer coefficients then the same property holds for the corresponding matrix A. In this case it can be proven that A is an integer matrix in a suitable basis of F. Note that the property of being an algebraic integer is defined in a way that is independent of a choice of a basis in F.
Read more about this topic: Algebraic Number Field
Famous quotes containing the words regular and/or trace:
““I couldn’t afford to learn it,” said the Mock Turtle with a sigh. “I only took the regular course.”
“What was that?” inquired Alice.
“Reeling and Writhing, of course, to begin with,” the Mock Turtle replied; “and then the different branches of Arithmetic—Ambition, Distraction, Uglification, and Derision.”
“I never heard of ‘Uglification,’” Alice ventured to say.”
—Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)
“Muhammad is the Messenger of God,
and those who are with him are hard
against the unbelievers, merciful
one to another. Thou seest them
bowing, prostrating, seeking bounty
from God and good pleasure. Their
mark is on their faces, the trace of
prostration....
God has promised
those of them who believe and do deeds
of righteousness forgiveness and
a mighty wage.”
—Qur’An. Victory 48:35, ed. Arthur J. Arberry (1955)