Algebraic Cycle - Flat Pullback and Proper Pushforward

Flat Pullback and Proper Pushforward

There is a covariant and a contravariant functoriality of the group of algebraic cycles. Let f : XX' be a map of varieties.

If f is flat of some constant relative dimension (i.e. all fibers have the same dimension), we can define for any subvariety Y'X':

which by assumption has the same codimension as Y′.

Conversely, if f is proper, for Y a subvariety of X the pushforward is defined to be

where n is the degree of the extension of function fields if the restriction of f to Y is finite and 0 otherwise.

By linearity, these definitions extend to homomorphisms of abelian groups

(the latter by virtue of the convention) are homomorphisms of abelian groups. See Chow ring for a discussion of the functoriality related to the ring structure.

Read more about this topic:  Algebraic Cycle

Famous quotes containing the words flat and/or proper:

    You don’t want a general houseworker, do you? Or a traveling companion, quiet, refined, speaks fluent French entirely in the present tense? Or an assistant billiard-maker? Or a private librarian? Or a lady car-washer? Because if you do, I should appreciate your giving me a trial at the job. Any minute now, I am going to become one of the Great Unemployed. I am about to leave literature flat on its face. I don’t want to review books any more. It cuts in too much on my reading.
    Dorothy Parker (1893–1967)

    My maiden Isabel,
    Reflaring rosabel.
    The fragrant camomel;
    The ruddy rosary,
    The sovereign rosemary,
    The pretty strawberry;
    The columbine, the nept,
    The jelofer well set,
    The proper violet:
    John Skelton (1460?–1529)