Algebraic Cycle - Flat Pullback and Proper Pushforward

Flat Pullback and Proper Pushforward

There is a covariant and a contravariant functoriality of the group of algebraic cycles. Let f : XX' be a map of varieties.

If f is flat of some constant relative dimension (i.e. all fibers have the same dimension), we can define for any subvariety Y'X':

which by assumption has the same codimension as Y′.

Conversely, if f is proper, for Y a subvariety of X the pushforward is defined to be

where n is the degree of the extension of function fields if the restriction of f to Y is finite and 0 otherwise.

By linearity, these definitions extend to homomorphisms of abelian groups

(the latter by virtue of the convention) are homomorphisms of abelian groups. See Chow ring for a discussion of the functoriality related to the ring structure.

Read more about this topic:  Algebraic Cycle

Famous quotes containing the words flat and/or proper:

    Castaway, your time is a flat sea that doesn’t stop,
    with no new land to make for and no new stories to swap.
    Anne Sexton (1928–1974)

    A proper secrecy is the only mystery of able men; mystery is the only secrecy of weak and cunning ones.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)