Algebraic Cycle - Definition

Definition

An algebraic cycle of an algebraic variety or scheme X is a formal linear combination V = ∑ ni·Vi of irreducible reduced closed subschemes. The coefficient ni is the multiplicity of Vi in V. Initially the coefficients are taken to be integers, but rational coefficients are also widely used.

Under the correspondence

{irreducible reduced closed subschemes VX} ↭ {points of X}

(V maps to its generic point (with respect to the Zariski topology), conversely a point maps to its closure (with the reduced subscheme structure)) an algebraic cycle is thus just a formal linear combination of points of X.

The group of cycles naturally forms a group Z*(X) graded by the dimension of the cycles. The grading by codimension is also useful, then the group is usually written Z*(X).

Read more about this topic:  Algebraic Cycle

Famous quotes containing the word definition:

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)