Algebraic Curve - Algebraic Function Fields

Algebraic Function Fields

The study of algebraic curves can be reduced to the study of irreducible algebraic curves. Up to birational equivalence, these are categorically equivalent to algebraic function fields. An algebraic function field is a field of algebraic functions in one variable K defined over a given field F. This means there exists an element x of K which is transcendental over F, and such that K is a finite algebraic extension of F(x), which is the field of rational functions in the indeterminate x over F.

For example, consider the field C of complex numbers, over which we may define the field C(x) of rational functions in C. If y2 = x3 − x − 1, then the field C(x, y) is an elliptic function field. The element x is not uniquely determined; the field can also be regarded, for instance, as an extension of C(y). The algebraic curve corresponding to the function field is simply the set of points (x, y) in C2 satisfying y2 = x3 − x − 1.

If the field F is not algebraically closed, the point of view of function fields is a little more general than that of considering the locus of points, since we include, for instance, "curves" with no points on them. If the base field F is the field R of real numbers, then x2 + y2 = −1 defines an algebraic extension field of R(x), but the corresponding curve considered as a locus has no points in R. However, it does have points defined over the algebraic closure C of R.

Read more about this topic:  Algebraic Curve

Famous quotes containing the words algebraic, function and/or fields:

    I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?
    Henry David Thoreau (1817–1862)

    If the children and youth of a nation are afforded opportunity to develop their capacities to the fullest, if they are given the knowledge to understand the world and the wisdom to change it, then the prospects for the future are bright. In contrast, a society which neglects its children, however well it may function in other respects, risks eventual disorganization and demise.
    Urie Bronfenbrenner (b. 1917)

    And sweet it was to dream of Fatherland,
    Of child, and wife, and slave; but evermore
    Most weary seemed the sea, weary the oar,
    Weary the wandering fields of barren foam.
    Alfred Tennyson (1809–1892)