Classification of Low-dimensional Algebras
Two-dimensional, three-dimensional and four-dimensional unital associative algebras over the field of complex numbers were completely classified up to isomorphism by Eduard Study.
There exist two two-dimensional algebras. Each algebra consists of linear combinations (with complex coefficients) of two basis elements, 1 (the identity element) and a. According to the definition of an identity element,
It remains to specify
- for the first algebra,
- for the second algebra.
There exist five three-dimensional algebras. Each algebra consists of linear combinations of three basis elements, 1 (the identity element), a and b. Taking into account the definition of an identity element, it is sufficient to specify
- for the first algebra,
- for the second algebra,
- for the third algebra,
- for the fourth algebra,
- for the fifth algebra.
The fourth algebra is non-commutative, others are commutative.
Read more about this topic: Algebra Over A Field