Alexander Grothendieck - Mathematical Achievements

Mathematical Achievements

Grothendieck's early mathematical work was in functional analysis. Between 1949 and 1953 he worked on his doctoral thesis in this subject at Nancy, supervised by Jean Dieudonné and Laurent Schwartz. His key contributions include topological tensor products of topological vector spaces, the theory of nuclear spaces as foundational for Schwartz distributions, and the application of Lp spaces in studying linear maps between topological vector spaces. In a few years, he had turned himself into a leading authority on this area of functional analysis — to the extent that Dieudonné compares his impact in this field to that of Banach.

It is, however, in algebraic geometry and related fields where Grothendieck did his most important and influential work. From about 1955 he started to work on sheaf theory and homological algebra, producing the influential "Tôhoku paper" (Sur quelques points d'algèbre homologique, published in 1957) where he introduced Abelian categories and applied their theory to show that sheaf cohomology can be defined as certain derived functors in this context.

Homological methods and sheaf theory had already been introduced in algebraic geometry by Jean-Pierre Serre and others, after sheaves had been defined by Jean Leray. Grothendieck took them to a higher level of abstraction and turned them into a key organising principle of his theory. He shifted attention from the study of individual varieties to the relative point of view (pairs of varieties related by a morphism), allowing a broad generalization of many classical theorems. The first major application was the relative version of Serre's theorem showing that the cohomology of a coherent sheaf on a complete variety is finite dimensional; Grothendieck's theorem shows that the higher direct images of coherent sheaves under a proper map are coherent; this reduces to Serre's theorem over a one-point space.

In 1956, he applied the same thinking to the Riemann–Roch theorem, which had already recently been generalized to any dimension by Hirzebruch. The Grothendieck–Riemann–Roch theorem was announced by Grothendieck at the initial Mathematische Arbeitstagung in Bonn, in 1957. It appeared in print in a paper written by Armand Borel with Serre. This result was his first major achievement in algebraic geometry. He went on to plan and execute a major foundational programme for rebuilding the foundations of algebraic geometry, which were then in a state of flux and under discussion in Claude Chevalley's seminar; he outlined his programme in his talk at the 1958 International Congress of Mathematicians.

His foundational work on algebraic geometry is at a higher level of abstraction than all prior versions. He adapted the use of non-closed generic points, which led to the theory of schemes. He also pioneered the systematic use of nilpotents. As 'functions' these can take only the value 0, but they carry infinitesimal information, in purely algebraic settings. His theory of schemes has become established as the best universal foundation for this major field, because of its great expressive power as well as technical depth. In that setting one can use birational geometry, techniques from number theory, Galois theory and commutative algebra, and close analogues of the methods of algebraic topology, all in an integrated way.

He is also noted for his mastery of abstract approaches to mathematics and his perfectionism in matters of formulation and presentation. Relatively little of his work after 1960 was published by the conventional route of the learned journal, circulating initially in duplicated volumes of seminar notes; his influence was to a considerable extent personal. His influence spilled over into many other branches of mathematics, for example the contemporary theory of D-modules. (It also provoked adverse reactions, with many mathematicians seeking out more concrete areas and problems.)

Read more about this topic:  Alexander Grothendieck

Famous quotes containing the words mathematical and/or achievements:

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    When science, art, literature, and philosophy are simply the manifestation of personality, they are on a level where glorious and dazzling achievements are possible, which can make a man’s name live for thousands of years. But above this level, far above, separated by an abyss, is the level where the highest things are achieved. These things are essentially anonymous.
    Simone Weil (1909–1943)