Airy Function - Relation To Other Special Functions

Relation To Other Special Functions

For positive arguments, the Airy functions are related to the modified Bessel functions:

\begin{align} \mathrm{Ai}(x) &{}= \frac1\pi \sqrt{\frac13 x} \, K_{1/3}\left(\tfrac23 x^{3/2}\right), \\ \mathrm{Bi}(x) &{}= \sqrt{\frac13 x} \left(I_{1/3}\left(\tfrac23 x^{3/2}\right) + I_{-1/3}\left(\tfrac23 x^{3/2}\right)\right).
\end{align}

Here, I±1/3 and K1/3 are solutions of

The first derivative of Airy function is

 \mathrm{Ai'}(x) = - \frac{x} {\pi \sqrt{3}} \, K_{2/3}\left(\tfrac23 x^{3/2}\right) .

Functions and can be represented in terms of rapidly converged integrals (see also modified Bessel functions )

For negative arguments, the Airy function are related to the Bessel functions:

\begin{align} \mathrm{Ai}(-x) &{}= \frac13 \sqrt{x} \left(J_{1/3}\left(\tfrac23 x^{3/2}\right) + J_{-1/3}\left(\tfrac23 x^{3/2}\right)\right), \\ \mathrm{Bi}(-x) &{}= \sqrt{\frac13 x} \left(J_{-1/3}\left(\tfrac23 x^{3/2}\right) - J_{1/3}\left(\tfrac23 x^{3/2}\right)\right). \end{align}

Here, J±1/3 are solutions of .

The Scorer's functions solve the equation . They can also be expressed in terms of the Airy functions:

\begin{align} \mathrm{Gi}(x) &{}= \mathrm{Bi}(x) \int_x^\infty \mathrm{Ai}(t) \, dt + \mathrm{Ai}(x) \int_0^x \mathrm{Bi}(t) \, dt, \\ \mathrm{Hi}(x) &{}= \mathrm{Bi}(x) \int_{-\infty}^x \mathrm{Ai}(t) \, dt - \mathrm{Ai}(x) \int_{-\infty}^x \mathrm{Bi}(t) \, dt. \end{align}

Read more about this topic:  Airy Function

Famous quotes containing the words relation to, relation, special and/or functions:

    To be a good enough parent one must be able to feel secure in one’s parenthood, and one’s relation to one’s child...The security of the parent about being a parent will eventually become the source of the child’s feeling secure about himself.
    Bruno Bettelheim (20th century)

    Hesitation increases in relation to risk in equal proportion to age.
    Ernest Hemingway (1899–1961)

    The English language is nobody’s special property. It is the property of the imagination: it is the property of the language itself.
    Derek Walcott (b. 1930)

    In today’s world parents find themselves at the mercy of a society which imposes pressures and priorities that allow neither time nor place for meaningful activities and relations between children and adults, which downgrade the role of parents and the functions of parenthood, and which prevent the parent from doing things he wants to do as a guide, friend, and companion to his children.
    Urie Bronfenbrenner (b. 1917)