Airy Function - Relation To Other Special Functions

Relation To Other Special Functions

For positive arguments, the Airy functions are related to the modified Bessel functions:

\begin{align} \mathrm{Ai}(x) &{}= \frac1\pi \sqrt{\frac13 x} \, K_{1/3}\left(\tfrac23 x^{3/2}\right), \\ \mathrm{Bi}(x) &{}= \sqrt{\frac13 x} \left(I_{1/3}\left(\tfrac23 x^{3/2}\right) + I_{-1/3}\left(\tfrac23 x^{3/2}\right)\right).
\end{align}

Here, I±1/3 and K1/3 are solutions of

The first derivative of Airy function is

 \mathrm{Ai'}(x) = - \frac{x} {\pi \sqrt{3}} \, K_{2/3}\left(\tfrac23 x^{3/2}\right) .

Functions and can be represented in terms of rapidly converged integrals (see also modified Bessel functions )

For negative arguments, the Airy function are related to the Bessel functions:

\begin{align} \mathrm{Ai}(-x) &{}= \frac13 \sqrt{x} \left(J_{1/3}\left(\tfrac23 x^{3/2}\right) + J_{-1/3}\left(\tfrac23 x^{3/2}\right)\right), \\ \mathrm{Bi}(-x) &{}= \sqrt{\frac13 x} \left(J_{-1/3}\left(\tfrac23 x^{3/2}\right) - J_{1/3}\left(\tfrac23 x^{3/2}\right)\right). \end{align}

Here, J±1/3 are solutions of .

The Scorer's functions solve the equation . They can also be expressed in terms of the Airy functions:

\begin{align} \mathrm{Gi}(x) &{}= \mathrm{Bi}(x) \int_x^\infty \mathrm{Ai}(t) \, dt + \mathrm{Ai}(x) \int_0^x \mathrm{Bi}(t) \, dt, \\ \mathrm{Hi}(x) &{}= \mathrm{Bi}(x) \int_{-\infty}^x \mathrm{Ai}(t) \, dt - \mathrm{Ai}(x) \int_{-\infty}^x \mathrm{Bi}(t) \, dt. \end{align}

Read more about this topic:  Airy Function

Famous quotes containing the words relation to, relation, special and/or functions:

    In relation to God, we are like a thief who has burgled the house of a kindly householder and been allowed to keep some of the gold. From the point of view of the lawful owner this gold is a gift; From the point of view of the burglar it is a theft. He must go and give it back. It is the same with our existence. We have stolen a little of God’s being to make it ours. God has made us a gift of it. But we have stolen it. We must return it.
    Simone Weil (1909–1943)

    Every word was once a poem. Every new relation is a new word.
    Ralph Waldo Emerson (1803–1882)

    Our normal waking consciousness, rational consciousness as we call it, is but one special type of consciousness, whilst all about it, parted from it by the filmiest of screens, there lie potential forms of consciousness entirely different.
    William James (1842–1910)

    Those things which now most engage the attention of men, as politics and the daily routine, are, it is true, vital functions of human society, but should be unconsciously performed, like the corresponding functions of the physical body.
    Henry David Thoreau (1817–1862)