Airy Function - Fourier Transform

Fourier Transform

Using the definition of the Airy function, it is straightforward to show its Fourier transform is given by


\mathcal{F}(\mathrm{Ai})(k) := \int_{-\infty}^{\infty} \mathrm{Ai}(x)\ \mathrm{e}^{- 2\pi \mathrm{i} k x}\,dx =
\mathrm{e}^{\frac{\mathrm{i}}{3}(2\pi k)^3}\,.

Read more about this topic:  Airy Function

Famous quotes containing the word transform:

    It is necessary to turn political crisis into armed crisis by performing violent actions that will force those in power to transform the military situation into a political situation. That will alienate the masses, who, from then on, will revolt against the army and the police and blame them for this state of things.
    Carlos Marighella (d. 1969)