Affine Geometry - Projective View

Projective View

In traditional geometry, affine geometry is considered to be a study between Euclidean geometry and projective geometry. On the one hand, affine geometry is Euclidean geometry with congruence left out; on the other hand, affine geometry may be obtained from projective geometry by the designation of a particular line or plane to represent the points at infinity. In affine geometry, there is no metric structure but the parallel postulate does hold. Affine geometry provides the basis for Euclidean structure when perpendicular lines are defined, or the basis for Minkowski geometry through the notion of hyperbolic orthogonality. In this viewpoint, an affine transformation geometry is a group of projective transformations that do not permute finite points with points at infinity.

Read more about this topic:  Affine Geometry

Famous quotes containing the word view:

    Put shortly, these are the two views, then. One, that man is intrinsically good, spoilt by circumstance; and the other that he is intrinsically limited, but disciplined by order and tradition to something fairly decent. To the one party man’s nature is like a well, to the other like a bucket. The view which regards him like a well, a reservoir full of possibilities, I call the romantic; the one which regards him as a very finite and fixed creature, I call the classical.
    Thomas Ernest Hulme (1883–1917)