Principles
The basic concept of any engine bell is to efficiently expand the flow of exhaust gases from the rocket engine into one direction. The exhaust, a high-temperature mix of gases, has an effectively random momentum distribution, and if it is allowed to escape in that form, only a small part of the flow will be moving in the correct direction to contribute to forward thrust.
Instead of firing the exhaust out of a small hole in the middle of a bell, an aerospike engine avoids this random distribution by firing along the outside edge of a wedge-shaped protrusion, the "spike". The spike forms one side of a virtual bell, with the other side being formed by the outside air—thus the "aerospike".
The idea behind the aerospike design is that at low altitude the ambient pressure compresses the wake against the nozzle. The recirculation in the base zone of the wedge can then raise the pressure there to near ambient. Since the pressure on top of the engine is ambient, this means that base gives no overall thrust (but it also means that this part of the nozzle doesn't lose thrust by forming a partial vacuum, thus the base part of the nozzle can be ignored at low altitude).
As the spacecraft climbs to higher altitudes, the air pressure holding the exhaust against the spike decreases, but the pressure on top of the engine decreases at the same time, so this is not detrimental. Further, although the base pressure drops, the recirculation zone keeps the pressure on the base up to a fraction of 1 bar, a pressure that is not balanced by the near vacuum on top of the engine; this difference in pressure gives extra thrust at altitude, contributing to the altitude compensating effect. This produces an effect like that of a bell that grows larger as air pressure falls, providing altitude compensation.
The disadvantages of aerospikes seem to be extra weight for the spike, and increased cooling requirements due to the extra heated area. Further, the larger cooled area can reduce performance below theoretical levels by reducing the pressure against the nozzle. Also, aerospikes work relatively poorly between Mach 1-3, where the airflow around the vehicle has reduced pressure, and this reduces the thrust.
Read more about this topic: Aerospike Engine
Famous quotes containing the word principles:
“Syntax is the study of the principles and processes by which sentences are constructed in particular languages. Syntactic investigation of a given language has as its goal the construction of a grammar that can be viewed as a device of some sort for producing the sentences of the language under analysis.”
—Noam Chomsky (b. 1928)
“Government ... thought [it] could transform the country through massive national programs, but often the programs did not work. Too often they only made things worse. In our rush to accomplish great deeds quickly, we trampled on sound principles of restraint and endangered the rights of individuals.”
—Gerald R. Ford (b. 1913)
“I am not one of those who have the least anxiety about the triumph of the principles I have stood for. I have seen fools resist Providence before, and I have seen their destruction, as will come upon these again, utter destruction and contempt. That we shall prevail is as sure as that God reigns.”
—Woodrow Wilson (18561924)