Definition
The adjugate of A is the transpose of the cofactor matrix C of A:
- .
Verbose definition goes as: suppose R is a commutative ring and A is an n×n matrix with entries from R.
- Calculate the (i,j) minor of A, denoted Mij, as the determinant of the (n − 1)×(n − 1) matrix that results from deleting row i and column j of A.
- Calculate the cofactor matrix of A, as the n×n matrix C whose (i,j) entry is the (i,j) cofactor of A.
That is, the adjugate of A is the n×n matrix whose (i,j) entry is the (j,i) cofactor of A:
- .
If A is invertible,
- .
Read more about this topic: Adjugate Matrix
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)