Adjugate Matrix - Definition

Definition

The adjugate of A is the transpose of the cofactor matrix C of A:

.

Verbose definition goes as: suppose R is a commutative ring and A is an n×n matrix with entries from R.

  • Calculate the (i,j) minor of A, denoted Mij, as the determinant of the (n − 1)×(n − 1) matrix that results from deleting row i and column j of A.
  • Calculate the cofactor matrix of A, as the n×n matrix C whose (i,j) entry is the (i,j) cofactor of A.

That is, the adjugate of A is the n×n matrix whose (i,j) entry is the (j,i) cofactor of A:

.

If A is invertible,

.

Read more about this topic:  Adjugate Matrix

Famous quotes containing the word definition:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)