Adjoint Functors - Adjunctions in Full

Adjunctions in Full

There are hence numerous functors and natural transformations associated with every adjunction, and only a small portion is sufficient to determine the rest.

An adjunction between categories C and D consists of

  • A functor F : CD called the left adjoint
  • A functor G : CD called the right adjoint
  • A natural isomorphism Φ : homC(F–,–) → homD(–,G–)
  • A natural transformation ε : FG → 1C called the counit
  • A natural transformation η : 1DGF called the unit

An equivalent formulation, where X denotes any object of C and Y denotes any object of D:

For every C-morphism there is a unique D-morphism such that the diagrams below commute, and for every D-morphism there is a unique C-morphism in C such that the diagrams below commute:

From this assertion, one can recover that:

  • The transformations ε, η, and Φ are related by the equations
\begin{align}
f = \Phi_{Y,X}^{-1}(g) &= \varepsilon_X\circ F(g) & \in & \, \, \mathrm{hom}_C(F(Y),X)\\
g = \Phi_{Y,X}(f) &= G(f)\circ \eta_Y & \in & \, \, \mathrm{hom}_D(Y,G(X))\\
\Phi_{GX,X}^{-1}(1_{GX}) &= \varepsilon_X & \in & \, \, \mathrm{hom}_C(FG(X),X)\\
\Phi_{Y,FY}(1_{FY}) &= \eta_Y & \in & \, \, \mathrm{hom}_D(Y,GF(Y))\\
\end{align}
  • The transformations ε, η satisfy the counit-unit equations
\begin{align}
1_F &= \varepsilon F\circ F\eta\\
1_G &= G\varepsilon \circ \eta G
\end{align}
  • Each pair is a terminal morphism from F to X in C
  • Each pair is an initial morphism from Y to G in D

In particular, the equations above allow one to define Φ, ε, and η in terms of any one of the three. However, the adjoint functors F and G alone are in general not sufficient to determine the adjunction. We will demonstrate the equivalence of these situations below.

Read more about this topic:  Adjoint Functors

Famous quotes containing the word full:

    There comes a time in every man’s education when he arrives at the conviction that envy is ignorance; that imitation is suicide; that he must take himself for better for worse as his portion; that though the wide universe is full of good, no kernel of nourishing corn can come to him but through his toil bestowed on that plot of ground which is given him to till.
    Ralph Waldo Emerson (1803–1882)