Application in Computer Science
| The graph pictured above has this adjacency list representation: | ||
| a | adjacent to | b,c |
| b | adjacent to | a,c |
| c | adjacent to | a,b |
In computer science, an adjacency list is a data structure for representing graphs. In an adjacency list representation, we keep, for each vertex in the graph, a list of all other vertices which it has an edge to (that vertex's "adjacency list"). For instance, the representation suggested by van Rossum, in which a hash table is used to associate each vertex with an array of adjacent vertices, can be seen as an example of this type of representation. Another example is the representation in Cormen et al. in which an array indexed by vertex numbers points to a singly linked list of the neighbors of each vertex.
One difficulty with the adjacency list structure is that it has no obvious place to store data associated with the edges of a graph, such as the lengths or costs of the edges. To remedy this, some texts, such as that of Goodrich and Tamassia, advocate a more object oriented variant of the adjacency list structure, sometimes called an incidence list, which stores for each vertex a list of objects representing the edges incident to that vertex. To complete the structure, each edge must point back to the two vertices forming its endpoints. The extra edge objects in this version of the adjacency list cause it to use more memory than the version in which adjacent vertices are listed directly, but these extra edges are also a convenient location to store additional information about each edge (e.g. their length).
Read more about this topic: Adjacency List
Famous quotes containing the words application, computer and/or science:
“Most people, no doubt, when they espouse human rights, make their own mental reservations about the proper application of the word human.”
—Suzanne Lafollette (18931983)
“The Buddha, the Godhead, resides quite as comfortably in the circuits of a digital computer or the gears of a cycle transmission as he does at the top of a mountain or in the petals of a flower.”
—Robert M. Pirsig (b. 1928)
“It is impossible to dissociate language from science or science from language, because every natural science always involves three things: the sequence of phenomena on which the science is based; the abstract concepts which call these phenomena to mind; and the words in which the concepts are expressed. To call forth a concept, a word is needed; to portray a phenomenon, a concept is needed. All three mirror one and the same reality.”
—Antoine Lavoisier (17431794)