Adenosine Triphosphate - Physical and Chemical Properties

Physical and Chemical Properties

ATP consists of adenosine — composed of an adenine ring and a ribose sugar — and three phosphate groups (triphosphate). The phosphoryl groups, starting with the group closest to the ribose, are referred to as the alpha (α), beta (β), and gamma (γ) phosphates. Consequently, it is closely related to the adenosine nucleotide, a monomer of RNA. ATP is highly soluble in water and is quite stable in solutions between pH 6.8–7.4, but is rapidly hydrolysed at extreme pH. Consequently, ATP is best stored as an anhydrous salt.

ATP is an unstable molecule in unbuffered water, in which it hydrolyses to ADP and phosphate. This is because the strength of the bonds between the phosphate groups in ATP is less than the strength of the hydrogen bonds (hydration bonds), between its products (ADP + phosphate), and water. Thus, if ATP and ADP are in chemical equilibrium in water, almost all of the ATP will eventually be converted to ADP. A system that is far from equilibrium contains Gibbs free energy, and is capable of doing work. Living cells maintain the ratio of ATP to ADP at a point ten orders of magnitude from equilibrium, with ATP concentrations a thousandfold higher than the concentration of ADP. This displacement from equilibrium means that the hydrolysis of ATP in the cell releases a large amount of free energy.

Two high-energy phosphate bonds (phosphoanhydride bonds) (those that connect adjacent phosphates) in an ATP molecule are responsible for the high energy content of this molecule. In the context of biochemical reactions, these anhydride bonds are frequently—and sometimes controversially—referred to as high-energy bonds. Energy stored in ATP may be released upon hydrolysis of the anhydride bonds. The primary phosphate group on the ATP molecule that is hydrolyzed when energy is needed to drive anabolic reactions is the γ-phosphate group. Located the farthest from the ribose sugar, it has a higher energy of hydrolysis than either the α- or β-phosphate. The bonds formed after hydrolysis—or the phosphorylation of a residue by ATP—are lower in energy than the phosphoanhydride bonds of ATP. During enzyme-catalyzed hydrolysis of ATP or phosphorylation by ATP, the available free energy can be harnessed by a living system to do work.

Any unstable system of potentially reactive molecules could potentially serve as a way of storing free energy, if the cell maintained their concentration far from the equilibrium point of the reaction. However, as is the case with most polymeric biomolecules, the breakdown of RNA, DNA, and ATP into simpler monomers is driven by both energy-release and entropy-increase considerations, in both standard concentrations, and also those concentrations encountered within the cell.

The standard amount of energy released from hydrolysis of ATP can be calculated from the changes in energy under non-natural (standard) conditions, then correcting to biological concentrations. The net change in heat energy (enthalpy) at standard temperature and pressure of the decomposition of ATP into hydrated ADP and hydrated inorganic phosphate is −20.5 kJ/mol, with a change in free energy of 3.4 kJ/mol. The energy released by cleaving either a phosphate (Pi) or pyrophosphate (PPi) unit from ATP at standard state of 1 M are:

ATP + H2O → ADP + Pi ΔG˚ = −30.5 kJ/mol (−7.3 kcal/mol)
ATP + H2O → AMP + PPi ΔG˚ = −45.6 kJ/mol (−10.9 kcal/mol)

These values can be used to calculate the change in energy under physiological conditions and the cellular ATP/ADP ratio. However, a more representative value (which takes AMP into consideration) called the Energy charge is increasingly being employed. The values given for the Gibbs free energy for this reaction are dependent on a number of factors, including overall ionic strength and the presence of alkaline earth metal ions such as Mg2+ and Ca2+. Under typical cellular conditions, ΔG is approximately −57 kJ/mol (−14 kcal/mol).

Read more about this topic:  Adenosine Triphosphate

Famous quotes containing the words physical, chemical and/or properties:

    Patience, that blending of moral courage with physical timidity.
    Thomas Hardy (1840–1928)

    We are close to dead. There are faces and bodies like gorged maggots on the dance floor, on the highway, in the city, in the stadium; they are a host of chemical machines who swallow the product of chemical factories, aspirin, preservatives, stimulant, relaxant, and breathe out their chemical wastes into a polluted air. The sense of a long last night over civilization is back again.
    Norman Mailer (b. 1923)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)