General Definition
The notation + is usually reserved for commutative binary operations, i.e. such that x + y = y + x, for all x, y . If such an operation admits an identity element o (such that x + o ( = o + x ) = x for all x), then this element is unique ( o′ = o′ + o = o ). For a given x , if there exists x′ such that x + x′ ( = x′ + x ) = o , then x′ is called an additive inverse of x.
If + is associative (( x + y ) + z = x + ( y + z ) for all x, y, z), then an additive inverse is unique
- x″ = x″ + o = x″ + (x + x′) = (x″ + x) + x′ = o + x′ = x′
We often write x − y as x + (−y).
For example, since addition of real numbers is associative, each real number has a unique additive inverse.
Read more about this topic: Additive Inverse
Famous quotes containing the words general and/or definition:
“Must I remind you that a chain is no stronger than its weakest link?”
—Jerome Cady, U.S. screenwriter, and Lewis Milestone. General Mitsubi (Richard Loo)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)