General Definition
The notation + is usually reserved for commutative binary operations, i.e. such that x + y = y + x, for all x, y . If such an operation admits an identity element o (such that x + o ( = o + x ) = x for all x), then this element is unique ( o′ = o′ + o = o ). For a given x , if there exists x′ such that x + x′ ( = x′ + x ) = o , then x′ is called an additive inverse of x.
If + is associative (( x + y ) + z = x + ( y + z ) for all x, y, z), then an additive inverse is unique
- x″ = x″ + o = x″ + (x + x′) = (x″ + x) + x′ = o + x′ = x′
We often write x − y as x + (−y).
For example, since addition of real numbers is associative, each real number has a unique additive inverse.
Read more about this topic: Additive Inverse
Famous quotes containing the words general and/or definition:
“The conclusion suggested by these arguments might be called the paradox of theorizing. It asserts that if the terms and the general principles of a scientific theory serve their purpose, i. e., if they establish the definite connections among observable phenomena, then they can be dispensed with since any chain of laws and interpretive statements establishing such a connection should then be replaceable by a law which directly links observational antecedents to observational consequents.”
—C.G. (Carl Gustav)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)