Examples
Example of arithmetic functions which are completely additive are:
- The restriction of the logarithmic function to N.
- The multiplicity of a prime factor p in n, that is the largest exponent m for which pm divides n.
- a0(n) - the sum of primes dividing n counting multiplicity, sometimes called sopfr(n), the potency of n or the integer logarithm of n (sequence A001414 in OEIS). For example:
-
- a0(4) = 2 + 2 = 4
- a0(20) = a0(22 · 5) = 2 + 2+ 5 = 9
- a0(27) = 3 + 3 + 3 = 9
- a0(144) = a0(24 · 32) = a0(24) + a0(32) = 8 + 6 = 14
- a0(2,000) = a0(24 · 53) = a0(24) + a0(53) = 8 + 15 = 23
- a0(2,003) = 2003
- a0(54,032,858,972,279) = 1240658
- a0(54,032,858,972,302) = 1780417
- a0(20,802,650,704,327,415) = 1240681
- The function Ω(n), defined as the total number of prime factors of n, counting multiple factors multiple times, sometimes called the "Big Omega function" (sequence A001222 in OEIS). For example;
-
- Ω(1) = 0, since 1 has no prime factors
- Ω(20) = Ω(2·2·5) = 3
- Ω(4) = 2
- Ω(27) = 3
- Ω(144) = Ω(24 · 32) = Ω(24) + Ω(32) = 4 + 2 = 6
- Ω(2,000) = Ω(24 · 53) = Ω(24) + Ω(53) = 4 + 3 = 7
- Ω(2,001) = 3
- Ω(2,002) = 4
- Ω(2,003) = 1
- Ω(54,032,858,972,279) = 3
- Ω(54,032,858,972,302) = 6
- Ω(20,802,650,704,327,415) = 7
Example of arithmetic functions which are additive but not completely additive are:
- ω(n), defined as the total number of different prime factors of n (sequence A001221 in OEIS). For example:
-
- ω(4) = 1
- ω(20) = ω(22·5) = 2
- ω(27) = 1
- ω(144) = ω(24 · 32) = ω(24) + ω(32) = 1 + 1 = 2
- ω(2,000) = ω(24 · 53) = ω(24) + ω(53) = 1 + 1 = 2
- ω(2,001) = 3
- ω(2,002) = 4
- ω(2,003) = 1
- ω(54,032,858,972,279) = 3
- ω(54,032,858,972,302) = 5
- ω(20,802,650,704,327,415) = 5
- a1(n) - the sum of the distinct primes dividing n, sometimes called sopf(n) (sequence A008472 in OEIS). For example:
-
- a1(1) = 0
- a1(4) = 2
- a1(20) = 2 + 5 = 7
- a1(27) = 3
- a1(144) = a1(24 · 32) = a1(24) + a1(32) = 2 + 3 = 5
- a1(2,000) = a1(24 · 53) = a1(24) + a1(53) = 2 + 5 = 7
- a1(2,001) = 55
- a1(2,002) = 33
- a1(2,003) = 2003
- a1(54,032,858,972,279) = 1238665
- a1(54,032,858,972,302) = 1780410
- a1(20,802,650,704,327,415) = 1238677
Read more about this topic: Additive Function
Famous quotes containing the word examples:
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)