Effector Cells
The cells of the adaptive immune system are a type of leukocyte, called a lymphocyte. B cells and T cells are the major types of lymphocytes. The human body has about 2 trillion lymphocytes, constituting 20-40% of white blood cells (WBCs); their total mass is about the same as the brain or liver. The peripheral blood contains 20–50% of circulating lymphocytes; the rest move within the lymphatic system.
B cells and T cells are derived from the same multipotent hematopoietic stem cells, and are morphologically indistinguishable from one another until after they are activated. B cells play a large role in the humoral immune response, whereas T-cells are intimately involved in cell-mediated immune responses. However, in nearly all other vertebrates, B cells (and T-cells) are produced by stem cells in the bone marrow. T-cells travel to and develop in the thymus, from which they derive their name. In humans, approximately 1-2% of the lymphocyte pool recirculates each hour to optimize the opportunities for antigen-specific lymphocytes to find their specific antigen within the secondary lymphoid tissues.
In an adult animal, the peripheral lymphoid organs contain a mixture of B and T cells in at least three stages of differentiation:
- naive cells that have matured, left the bone marrow or thymus, have entered the lymphatic system, but that have yet to encounter their cognate antigen,
- effector cells that have been activated by their cognate antigen, and are actively involved in eliminating a pathogen.
- memory cells – the long-lived survivors of past infections.
Read more about this topic: Adaptive Immune System
Famous quotes containing the word cells:
“Madness is locked beneath. It goes into tissues, is swallowed by the cells. The cells go mad. Cancer is their flag. Cancer is the growth of madness denied.”
—Norman Mailer (b. 1923)